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Abstract
Global health organizations have provided recommendations regarding exercise for the general population. Strength training 
has been included in several position statements due to its multi-systemic benefits. In this narrative review, we examine the 
available literature, first explaining how specific mechanical loading is converted into positive cellular responses. Secondly, 
benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly 
outlined for both common musculoskeletal disorders and primary prevention strategies.
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1 Introduction

The importance of strength with regard to athletic perfor-
mance has been highlighted within recent reviews [1, 2]. The 
benefits of increasing muscular strength include a positive 
influence on rate of force development (RFD) and power 
[1, 3, 4], improved jumping [1], sprinting [5] and change 
of direction (COD) performance [6], greater magnitudes of 
potentiation [1], and enhanced running economy [7]. Strong 
evidence supports the notion that maximal strength serves as 

one of the key foundations for the expression of high power 
outputs and that improving and maintaining high levels of 
strength are of utmost importance to best capitalise on these 
associations [8–13].

What appears to be discussed less so is the impact of 
strength training on musculoskeletal health. This is surprising 
given that within previous literature it has been highlighted 
that strength training can reduce acute sports injuries by one-
third, and overuse injuries by almost half [14]. Furthermore, 
strength training programmes appear superior to stretching, 
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Key Points 

• Strength training confers unique benefits to the mus-
culoskeletal system in common disorders and in healthy 
people.

• The application of mechanical loading must be specific 
to obtain the desired positive adaptation.

• Healthcare professionals should promote strength 
training among the general population due to its multi-
systemic and specific musculoskeletal benefits.

vigorous physical activity has potential anti-tumorigenic prop-
erties [28]. In fact, it is associated with larger reductions in 
all-cause mortality [25] and cancer mortality [29, 30]. Specifi-
cally, resistance training alone was associated with 21% lower 
all-cause mortality [31]. Furthermore, patients with breast, 
colorectal, and prostate cancer involved in superior levels of 
exercise following cancer diagnosis, were associated with a 
28–44% reduced risk of cancer-specific mortality, a 21–35% 
lower risk of cancer recurrence, and a 25–48% decreased risk 
of all-cause mortality [32, 33].

In this narrative review, we focus on the available litera-
ture related to strength training and musculoskeletal health, 
with the aim of providing practical recommendations in line 
with best practice for healthcare professionals involved in 
orthopaedic and sports medicine. Clear prescription details 
will be outlined to foster the best possible biological adapta-
tions and thus, facilitate the use of strength training within 
all populations. In doing so, we will first outline the key 
principles underpinning mechano-transduction to illustrate 
how the body converts mechanical loading into cellular 
responses, before finally providing evidence-based rec-
ommendations for the safe interdisciplinary application of 
strength training across different populations.

2  Strength, Mechano‑Transduction, 
and the Neuroendocrine System

Strength training has been shown to demonstrate a superior, 
dose-dependent and safe risk reduction strategy for acute 
and overuse sports injuries [34]. Information regarding the 
underpinning qualities of muscular strength development 
and the interaction of both cellular and metabolic processes 
in response to specific mechanical loading will first be dis-
cussed. Strength training’s wide application to improve 
musculoskeletal tissues, and its role in the regulation and 
prevention of systemic disorders will then be examined.

2.1  Underpinning Factors

The development of muscular strength can be broadly 
divided into morphological and neural factors [10]. The 
maximal force generated by a single muscle fibre is directly 
proportional to its cross-sectional area (CSA) (number of 
sarcomeres in parallel) [35, 36], and by the muscle fibres’ 
composition [2, 9, 10, 37]; specifically, type II fibres (IIa/
IIx) have a greater capacity to generate power per unit of 
CSA, than the relatively smaller type I fibres. Architec-
tural features such as longer fascicle length and the penna-
tion angle also affect the force generating capacity of the 
muscle. Longer fascicle length allows more force produc-
tion through an optimal length-tension relationship [10]. 
The number of sarcomeres in series influences a muscle’s 

proprioception training, and multiple exposure programmes 
for sports injury risk reduction [14]. Malone et al. [15] found 
that players with a higher relative lower body strength (3 rep-
etition maximum [RM] trap-bar deadlift normalised to bod-
yweight) had a reduced risk of injury compared to weaker 
players. In addition, stronger athletes had a better tolerance to 
both higher absolute workloads and spikes in load than weaker 
athletes. Despite its apparent effectiveness for the reduction of 
injury risk, there is still far less coverage regarding the positive 
effect of strength training on injury risk or occurrence within 
the scientific literature, which may be due to its poor integra-
tion within musculoskeletal rehabilitation [16] and primary 
prevention strategies for sports injuries [17, 18]. This is further 
limited by a poor understanding and knowledge of physical 
activity guidelines among healthcare professionals [19–21], 
which provides challenges for its integration into sports medi-
cine practice. Indeed, it is not uncommon for healthcare pro-
fessionals to recommend “strengthening programmes” using 
10 or more repetitions per set without a clear indication of 
the intensity adopted [22, 23]. Although most resistance 
training modes have demonstrated improvements in strength 
in inactive/untrained individuals during the first weeks [24], 
it must be pointed out that “strengthening programmes” and 
“strength training” are not the same; hence, they cannot be 
used interchangeably.

Strength training is not an exclusive cornerstone of sports 
performance or injuries. The World Health Organization 
(WHO) has provided global recommendations for the general 
population relevant to the prevention of non-communicable 
diseases. They recommended at least 150 min of moderate-
intensity aerobic physical activity (3–5.9 metabolic equiva-
lent tasks, METs) [25], with muscle strengthening activities 
involving major muscle groups on two or more days a week 
[230–233]. The biological principles underlying these global 
recommendations rely on the unique multi-systemic and mul-
tidimensional benefits of exercise [26] (see Fig. 1), its inex-
pensive adoption, and natural human responsiveness [27]. To 
mention the most salient point, recent evidence showed that 
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contractility and the rate at which it can shorten. As pen-
nation angle increases, more sarcomeres can be arranged 
in parallel, thus improving the muscle force generating 
capacity [10]. Greater pennation angles are more common 
in hypertrophied than in normal muscles. In regards to 
neural factors, the size principle dictates that motor unit 
(MU) recruitment is related to MU type, and that MUs 
are recruited in a sequenced manner based on their size 
(smallest to largest) [38]. Thus, the availability of high-
threshold MUs is advantageous for higher force produc-
tion. Furthermore, a higher rate of neural impulses (firing 
frequency) and the concurrent activation of multiple motor 
units (motor unit synchronization) enhance the magnitude 
of force generated during a contraction. These, together 
with an effective neurological system and intermuscular 
coordination (i.e., appropriate magnitude and timing of 
activation of agonist, synergist, and antagonist muscles) 
permit maximal force production [2, 9, 10, 37, 39, 40]. 
The development of these specific features underpinning 
improved force capacity is determined by the mechanical 
stimuli applied to the musculoskeletal system. Indeed, the 
musculoskeletal system not only enables locomotion and 
the transmission of forces for functional movements, but 

also provides protection to vital organs. Furthermore, the 
musculoskeletal system stores and secretes key substances 
(e.g., amino acids, glucose, myokines, ions, etc.) that regu-
late whole body metabolism [41, 42].

Given their mechanical role, musculoskeletal tissues are 
capable of responding and adapting to mechanical forces 
via a process called mechano-transduction [43]. The body 
converts mechanical loading into cellular responses, which 
in turn, promotes structural changes in tissue mass, struc-
ture, and quality [44]. For example, an appropriate increase 
in mechanical loading of skeletal muscle results in an aug-
mented skeletal muscle mass (i.e., increased CSA). The 
same rules apply for bone and tendon properties, which are 
in large part, dependent on skeletal muscle-derived mechani-
cal loading [41]. Both acute and chronic mechanical stress-
ors may temporarily compromise the body’s “allostasis”. 
This refers to the process by which the body responds to 
stressors and maintains homeostasis [45, 46], with the neu-
roendocrine system responsible for regulating the mainte-
nance of an optimal catabolic/anabolic state. Dysregulation 
induced by allostatic overload has been associated with the 
breakdown of musculoskeletal tissues, inflammation [47, 
48], and delayed tissue healing [49]. The neuroendocrine 

Fig. 1  Multi-systemic benefits 
of strength training
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system plays an important role not only in acute exercise 
performance, but also in tissue growth and remodelling. 
Relevant to mechano-transduction, the endocrine system 
secretes hormones into the circulatory system that are gen-
erally categorised as catabolic, leading to the breakdown 
of muscle proteins (e.g., cortisol), or anabolic (e.g., testos-
terone), leading to the synthesis of muscle proteins [50]. 
Muscle protein synthesis, recovery, and adaptation are the 
results of the dynamic interaction between these anabolic 
and catabolic hormones [51]. Although several factors such 
as exercise selection, intensity and volume, nutritional intake 
and training experience appear to influence the acute tes-
tosterone response [50–52], it has been shown that com-
pound exercises, such as weightlifting exercises, squats, 
and deadlifts, are capable of producing larger elevations of 
testosterone than isolation exercises [52–54]. Furthermore, 
programmes characterized by moderate load, high total vol-
ume load and short rest periods (i.e., hypertrophy schemes) 
may produce substantial elevations in total testosterone, thus 
reinforcing the importance of specific exercise prescription 
to reach the targeted physiological adaptation [51, 52]. Simi-
larly, increases in acute cortisol levels tend to be influenced 
by high volume programs, and not by typical strength train-
ing protocols [51, 55], thus altering the testosterone/cortisol 
ratio [56, 57].

Understanding the coupling of the mechanical stimuli 
into molecular responses appears vital for regenerative medi-
cine applied to musculoskeletal disorders and for primary 
prevention strategies in a wide range of health issues and 
medical specialties. Mechanical forces may be manipulated 
in such a way that maximises the positive body responses 
within a predictable physiological timeframe. The next sec-
tion includes relevant information for interdisciplinary care.

3  Multi‑Systemic Benefits

Physical inactivity increases the risk of type 2 diabetes, 
cardiovascular diseases (CVD), colon cancer, postmeno-
pausal breast cancer, dementia, and depression [58–60]. 
Furthermore, physical inactivity is associated with abdom-
inal adiposity, which may carry the detrimental effects 
of visceral fat and persistent systemic low-grade inflam-
mation [61, 62]. It is suggested that the skeletal muscles 
counteract the harmful effects of inactivity via release of 
specific myokines, such as myostatin, leukemia inhibitory 
factor (LIF), interleukin (IL)-6, IL-7, brain-derived neuro-
tropic factor (BDNF), insulin-like growth factor 1 (IGF-
1), fibroblast growth factor 2 (FGF-2), follistatin-related 
protein 1 (FSTL-1) and irisin [63]. Therefore, contracting 
skeletal muscles may be capable of releasing protective fac-
tors into the circulatory system during exercise. This may 
then mediate metabolic and physiological responses in other 

organs, such as the adipose tissue, liver, the cardiovascular 
system, and the brain [63]. Increased energy expenditure 
via resistance training can lead to a decrease in abdominal 
fat and specifically visceral fat, improving the catabolism 
and hydrolysis of very low-density lipoprotein-triglycerides 
[61]. These changes in body composition decrease inflam-
matory products, thus reducing the risk of developing mul-
tiple associated chronic diseases such as type 2 diabetes 
and CVD [31]. Furthermore, resistance training improves 
mitochondrial function in skeletal muscles, oxidative and 
glycolytic enzyme capacity, and glucose homeostasis, thus 
leading to decreased blood glucose [64] and improved type 
2 diabetes symptoms [31, 61]. Also, resistance training is 
associated with reduced treatment side effects in cancer 
patient [33, 65, 66]. The anti-tumorigenic effects of exer-
cise appear to be related to the suppression of cancer cells 
growth, restriction of inflammatory signalling pathways in 
myeloid immune cells, and regulation of acute and chronic 
systemic inflammatory responses [28, 67, 68].

Further benefits of resistance training include a reduction 
in anxiety (overall mean effect ∆ = 0.31) [69] and depres-
sive symptoms, with a moderate effect size of 0.66 (95% CI 
0.48–0.83) [70, 71]. Mental health benefits may be under-
pinned by the social interactions typically experienced dur-
ing exercise and by the positive expectations toward exer-
cise [72]. However, alterations in the hypothalamic pituitary 
adrenal (HPA) axis and in the neural circuitry involved in 
affective, behavioural, and cognitive processes have been 
documented in anxiety and depression-related disorders 
[73]. Although still speculative, strength training may affect 
the HPA axis through modulation of cortisol activity [74] 
and may have antidepressant effects through circulation of 
neurotrophins such as BDNF [26] and growth factors such 
as the IGF-1 [75]. Considering that sleep disturbance is 
one of the cardinal symptoms of depressive illness, it is not 
surprising that chronic resistance training in isolation also 
improves subjective sleep quality and day-time function, 
with moderate-to-large effect sizes [76].

Furthermore, there is strong evidence that exercise, 
including strength training, delivered within a biopsychoso-
cial approach, is effective for musculoskeletal pain [77–79]. 
From a neurobiological perspective, it can strengthen central 
pain inhibitory pathways and the immune system response 
to potentially nociceptive stimuli [80–85].

In regard to coronary heart disease, progressive resistance 
training provides improvement in cardiorespiratory func-
tion comparable to aerobic training alone. When combined, 
they offer more substantiated improvements in both fitness 
and strength [86]. Resistance and aerobic training seem 
to increase the number of a specific subset of stem cells, 
broadly referred as circulating angiogenic cells (CAC). This 
enhances the vascular endothelium regeneration and angio-
genesis, thus improving myocardial perfusion and lowering 
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the risk of cardiovascular diseases [26, 87]. Also, systolic 
and diastolic blood pressure may be significantly lowered by 
dynamic and isometric resistance training [88].

3.1  The Effect of Strength Training on Cartilage 
Health

The connective tissue that lines the ends of bones in all 
diarthrodial joints is called articular cartilage. Its role is to 
support and distribute forces generated during joint load-
ing [89]. The articular surface is covered with hyaline car-
tilage, which is avascular, firm, yet pliable. It adapts its 
structure under forces but may recover its original shape 
on the removal of such forces. Of note, the ability of car-
tilage to repair is somewhat limited, which is mainly the 
result of its avascularity [90]. Differences in cartilage mor-
phology between individuals cannot be readily explained 
by variability in mechanical loading history. It seems that 
mechanical stimulation does not play a significant role in 
cartilage regulation, with evidence to suggest that carti-
lage thickness is strongly determined by genetics [91]. 
Although it has been demonstrated that immobilisation 
reduces cartilage thickness (range 5–7%) [92], the adaptive 
functional ability of human cartilage in relation to exercise 
does not seem to be linear [91]. Interestingly, Hudelmaier 
et al. [93] found that thigh muscle CSA (which is a modifi-
able factor) is a good and independent predictor of carti-
lage morphology in both young and elderly adults. Simi-
larly, Ericsson et al. [94] showed that lower thigh muscle 
strength 4 years after partial meniscectomy was associated 
with more severe radiographic osteoarthritis (OA) in the 
medial tibiofemoral compartment of the operated and the 
contralateral knee 11 years later, suggesting that muscle 
strength can help to preserve joint integrity.

For years, changes in the articular surface have been 
erroneously deemed the only cause of symptoms of 
patients suffering of OA. Compelling evidence shows the 
coexistence of multiple comorbidities such as obesity, car-
diovascular diseases, diabetes, and metabolic syndrome 
in OA patients [21, 95]. Metabolic disturbances, chronic 
low-grade inflammation, and vascular endothelial dysfunc-
tion appear to be important factors in OA development 
and progression [21, 96]. Consistent with these findings, 
a negative correlation between knee cartilage volume and 
the concentration of circulating inflammatory cytokines, 
such as IL-6 and TNF, as well as C-reactive protein (CRP) 
has been demonstrated [95]. Therefore, contemporary evi-
dence frames the definition of OA within a biopsychoso-
cial model, in which multidimensional aspects modulate 
inflammatory processes and tissue sensitivity [97, 98]. 
Among these potential factors, recent reviews stated that 
knee extensor muscle weakness is a risk factor for knee 
OA [98, 99]. Segal et al. [100] found that thigh muscle 

strength did not predict incident radiographic, but did pre-
dict incident symptomatic, knee OA. In contrast, Thor-
stensson et al. [101] showed that reduced functional per-
formance in the lower extremity predicted development 
of radiographic knee OA 5 years later among people aged 
35–55 with persistent knee pain and normal radiographs at 
baseline. Pietrosimone et al. [102] found that higher lev-
els of quadriceps strength correlated with higher physical 
activity in knee OA patients (r = 0.44; r2 = 0.18).

Clinical guidelines for knee OA recommend strength 
training as one of the key elements of OA management [98, 
103]. Indeed, the systematic review and meta-analysis con-
ducted by Juhl et al. [104] showed that more pain and dis-
ability reduction occurred with quadriceps specific exercise 
than general lower limb exercise (standardized mean differ-
ence [SMD] 0.85 versus 0.39, and 0.87 versus 0.36, for pain 
and disability, respectively). Strength training should be an 
integral component of OA management together with educa-
tion, weight loss, increase of lean mass, and improvement 
of aerobic capacity [103]. Beyond the aforementioned ben-
efits on pain and disability levels, Bricca et al. [105] showed 
that loading the knee joint (via strength training) was safe 
and provided no detrimental effects for articular cartilage 
in people at increased risk of, or with, knee OA. Although 
the dosage is still unclear [106], potential beneficial mecha-
nisms may be related to stiffening of the pericellular and 
inter-territorial matrix in response to dynamic loading [107], 
increased cartilage volume and glycosaminoglycan [105], 
and the protective role of muscle strength against cartilage 
loss [108].

3.2  The Effect of Strength Training on Bone Health

Bone tissue regulates metabolic demands on the skeleton 
largely through calciotropic hormones (vitamin D3, parathy-
roid hormone, and calcitonin) [109]. Secondly, it maintains 
the structure needed to withstand daily loading. These struc-
tural functions are determined by genetic factors as well as 
adaptation mechanisms to the loading environment, which 
are mediated by osteoprogenitor cells, including stromal 
cells, osteoblasts, and osteocytes [110, 111]. Osteocytes are 
believed to be the critical mechanical sensor cells. Their 
stimulation cannot be derived directly from matrix deforma-
tion, as the required magnitude of strains is so high that it 
would cause bone fracture [112, 113]. Therefore, it appears 
that mechanical loading induces the dynamic flow of the 
pericellular interstitial fluid in the lacunar-canalicular sys-
tem. This seems to contribute significantly to osteocyte 
mechano-transduction and bone remodelling process [114].

Improved bone tissue mass provides higher structural 
strength and better protection against fractures [91]. Hence, 
failure to maintain a positive bone adaptation needed to 
withstand daily loading might be used to define osteoporosis 
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[110]. Indeed, according to Wolff’s Law, a sufficient stim-
ulus needs to be applied to the bone tissue to promote a 
specific magnitude of positive adaptation [115]. Contrary 
to societal misconceptions, bone responds positively to 
mechanical loads that induce high-magnitude strains at high 
rates or frequencies [116–118]. Indeed, despite being com-
mon advice from healthcare professionals, data showed that 
regular walking has no significant effect on preservation of 
bone mineral density (BMD) at the spine in postmenopausal 
women [119]. In contrast, Watson et al. [120] demonstrated 
the superior benefits of high-intensity resistance and impact 
training (HiRIT) compared to a low-intensity exercise pro-
gram (10–15 repetitions at < 60% 1RM) in postmenopau-
sal women with osteopenia and osteoporosis. Specifically, 
after a first month of safe transition and familiarisation, a 
supervised HiRIT program was completed over an 8-month 
period, twice-weekly, for 30-min. Resistance exercises 
included compound movements such as a deadlift, overhead 
press, and back squat, performed in 5 sets of 5 repetitions at 
an intensity of 80–85% 1RM. Impact loading was applied 
via jumping chin-ups with drop landings. HiRIT was signifi-
cantly (p ≤ 0.001) superior compared to the control group for 
lumbar spine BMD (+2.9% ± 3.0% for exercise group ver-
sus −1.2% ± 2.3% for control; 95% CI 2.1% to 3.6% versus 
−1.9% to −0.4%) and femoral neck BMD (+0.1% ± 2.7% 
versus −1.8% ± 2.6%; 95% CI −0.7% to 0.8% versus −2.5 
to −1.0%) and physical function (lumbar and back exten-
sor strength, timed up-and-go test, 5 times sit to stand test, 
functional reach test, and vertical jump). Furthermore, it did 
not increase the risk of vertebral fracture, and was associated 
with a clinically relevant improvement in thoracic kyphosis 
[121]. Similar results have been reported in a meta-analysis 
including 1769 postmenopausal women [122]. Combined 
resistance and impact training (i.e., jumping, skipping, hop-
ping) are estimated to promote clinically significant gains 
(almost 1.8 and 2.4%) in hip and spine BMD in postmeno-
pausal women [122]. Considering that in the first few years 
after menopause women lose up to 5% of bone mass annu-
ally, smaller changes may be considered a valuable result to 
counteract the decline in bone mass during the aging pro-
cess [123]. This further highlights the effectiveness of pro-
gressive resistance training combined with high-impact or 
weight-bearing exercises in increasing BMD at the femoral 
neck and lumbar spine. The cumulative body of evidence 
shows that the greatest skeletal benefits to the spine and hip 
are provided by progressive resistance training [124, 125] 
and can be achieved with high magnitude of loading (around 
80–85% 1 RM), performed at least twice a week, target-
ing large muscles crossing the hip and spine through multi-
joint movements (e.g. squats and deadlifts) [126, 127]. Such 
intervention may show positive changes after 4 or 6 months, 
although greater magnitudes are expected when the interven-
tion is continued for more than 1 year. Progressive resistance 

training, combined with weight-bearing impact training, can 
be implemented among different populations, with men and 
premenopausal women showing consistently positive adap-
tations [123, 128–130].

The transition from childhood to adolescence is criti-
cal for bone mineral accrual. During this phase, growth 
hormone (GH) and IGF-I are major contributors to bone 
growth [131]. Participation in sports that emphasize weight-
bearing, high-impact and multiplanar-impact (e.g., soccer 
and racquet games) exercises promote peak bone mass and 
geometry [132]. Exposure to mechanical loading has sub-
stantial benefits not only in youth. It also appears to trans-
late to greater bone strength over a lifetime [133], with con-
sequent reduced risk of fracture, as well as potential delay 
in osteoporosis development [134]. Consistently, research 
has shown that youth athletes exposed to high or unusual 
impact weight-bearing sports with rapid rates of loading 
have superior bone mass at loaded skeletal sites compared 
to non-athletes or athletes in non-weight-bearing or lower 
impact sports [127]. For example, Courteix et al. [135] 
found that elite pre-pubertal female gymnasts displayed sig-
nificantly (p ≤ 0.05) higher BMD at mid-radius (+15.5%), 
distal radius (+33%), L2-4 vertebrae (+11%), femoral neck 
(+15%) and Ward’s triangle (+15%) than swimmers and 
active peers. This further reinforces how bone mineral 
accrual responds positively to physical activity and spe-
cific sites of impact loading. Collectively, the available data 
strongly suggest to include exercise that is weight-bearing 
and characterized by impact loading in youth to promote 
and maintain bone health over one’s lifetime [131].

Stress fractures in the lower limb account for 80%–90% 
of all stress fractures, representing between 0.7% and 20% 
of all sports medicine injuries [136]. The proposed mecha-
nism underpinning stress fractures appears to be related to 
an imbalance between the rate of stress-induced micro-frac-
tures and the rate at which bone repairs [136]. Although it is 
important to recognise their multifactorial pathophysiology, 
Schnackenburg et al. [137] showed a correlation between 
impaired bone quality, particularly in the posterior region 
of the distal tibia, and decreased muscle strength with lower 
limb stress fractures in female athletes. Clark et al. [138] 
revealed that lower grip strength correlated with higher risk 
of upper limb fractures (odds ratio 2.10, 95% CI 1.23 to 
3.31) in active young people aged 12–16 years. They also 
showed that muscle strength was positively associated with 
BMD, BMC, or bone area. Popp et al. [139] analysed com-
petitive distance runners with and without a history of stress 
fracture. Lower cortical bone strength, cortical area and 
smaller muscle CSA were present in runners with a history 
of stress fracture. Hoffman et al. [140] found that military 
recruits who were one standard deviation below the popula-
tion mean in both absolute and relative strength had a five 
times greater risk for stress fracture than stronger recruits. 
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This is probably related to increased BMD associated with 
greater strength levels.

3.3  The Effect of Strength Training on Tendon 
Health

The tendon is a connective tissue that transmits the force 
exerted by the corresponding muscle to the skeleton [141]. 
Its key role is to store, recoil, and release energy while 
maintaining optimal efficiency in power production [142]. 
Hence, tendon stiffness (i.e., the slope of the force–elon-
gation relationship or the resistance to deformation in 
response to an applied force) plays a critical role in athletic 
performance, stretch shortening cycle (SSC) activities, and 
movement economy [141]. Changes in tendon stiffness are 
a consequence of periods of increased mechanical loading. 
Alterations of the tendon material (i.e., increase of Young’s 
modulus) and morphological properties (i.e., increase in 
CSA) are the two underpinning mechanisms [143]. Exces-
sive mechanical loading is commonly considered an impor-
tant factor in the development of tendinopathy, which is 
an umbrella term that indicates a nonrupture injury in the 
tendon or paratendon that is exacerbated by mechanical 
loading [144]. Clinical features are activity-related pain, 
focal tendon tenderness, and reduced load capacity and 
performance [145, 146]. A disconnection between tendon 
structure and symptoms in tendinopathy exists [147, 148], 
thus confirming multifactorial aspects contributing to its 
occurrence and persistence [149]. Nonetheless, loading pro-
tocols have been shown to be effective in the management 
of this condition [150, 151]. Evidence-based recommen-
dations for an effective stimulus for tendon adaptation in 
healthy adults suggest high-intensity loading (85–90% of 
maximal voluntary isometric contraction [MVIC]) applied 
in five sets of four repetitions, with a contraction and relax-
ation duration of 3 s each, and an interset rest of 2-min 
[141]. This has been shown to increase maximal strength, 
tendon stiffness, Young’s modulus, and tendon CSA [141, 
143, 152, 153]. Eccentric actions are the most commonly 
used loading schemes in the management of tendinopathies, 
despite their non-superiority to other loading programmes 
[154–157]. The load employed is usually less than the con-
centric 1RM, which is in contrast with the documented 
benefits of supramaximal eccentric training stimuli [158, 
159]. Similarly, in the absence of clear supporting evidence, 
isometric exercise has recently become the latest debated 
trend in tendon rehabilitation in the initial phase [160–162]. 
Overall, key factors such as time under tension and load/
intensity are missing in most tendinopathy studies [150, 
154, 163], thus making unclear which physical adaptation 
is targeted and limiting the synthesis regarding optimal 
doses into evidence based recommendations [22]. In fact, 
the magnitude and duration of the force application on the 

tendon appear more relevant than the type of contraction 
[141]. This highlights the need for adequately designed 
studies to improve knowledge within this field [23].

Achilles tendinopathy (AT) is one of the most common 
tendinopathies with an incidence rate of 2.35 per 1,000 
within the general adult population and a prevalence of 
36% among recreational runners [164]. Reduced plantar-
flexor strength has been recognised to be a significant risk 
factor for AT [165, 166]. Cross-sectional studies confirm 
large deficits in plantarflexor torque between AT sympto-
matic subjects and healthy controls [167, 168]. Although it 
may appear intuitive that strength training could be adopted 
as a primary prevention strategy for reducing the risk of ten-
dinopathies, current literature to support this notion is lack-
ing. A recent systematic review found limited evidence for 
the efficacy of preventative interventions for tendinopathies 
[169]. Among the studies examined, strength training was 
employed with much lighter loads and subsequently higher 
repetition ranges [170] and thus did not meet evidence based 
recommendations for an effective stimulus for the tendon 
[141, 143]. Therefore, further prospective studies are needed 
in this area.

Loading programmes have been shown to positively 
enhance structural adaptations among patients presenting 
with tendinopathy [150, 164]. However, Heinemeier et al. 
[171] found that renewal of adult core tendon tissue is 
extremely limited especially following adolescence. Kubo 
et al. [172] revealed that length and CSA of the patellar 
tendon correlated with increases in body size during growth, 
whereas Young’s modulus was lower in the pre-pubertal 
phase compared to junior high school students and adults. 
Waugh et al. [173] demonstrated that dimensional and mat-
urational aspects of Achilles tendon stiffness were under-
pinned not only by age, but also by body mass and peak 
force production, thus reinforcing the correlation between 
tendon stiffness and muscular force capacity in childhood 
and adolescence. In this regard, it should be noted that safe 
improvements in muscular strength are possible in youth 
of all ages and stages of maturation with resistance train-
ing [174]. Concomitant with a reduction in the number of 
sport-related injuries [175], this reinforces the importance 
of engagement in youth athletic development programmes 
in the pre-pubertal years with continuation throughout the 
later stages of maturation and into adulthood [176, 177].

3.4  The Effect of Strength Training on Muscle 
Health

Skeletal muscles are characterized by myofibres and connec-
tive tissue. The myofibres are responsible for the contractile 
function of the muscle, whereas the connective tissue supply 
the structure that binds the individual muscle cells together 
during muscle contraction [178]. Both mechanical and 
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Table 1  Summary of benefits for various musculoskeletal tissues and disorders associated with strength/resistance training

CSA cross-sectional area, RM repetition maximum, MVC maximal voluntary contraction, MVIC maximal voluntary isometric contraction

Muscu-
loskeletal 
tissue

Function Potential beneficial mechanisms Specific recommendation Examples of application for common related 
conditions

Cartilage Support and distribution of forces gener-
ated during joint loading

Stiffening of the pericellular and inter-
territorial matrix

Increase in cartilage volume and glycosa-
minoglycan

Protection against cartilage loss

Specific exercise for targeted area appears 
relevant

Inclusion in multidimensional care man-
agement

Potential benefits associated with 
increased CSA

Knee osteoarthritis
Joint loading exercises
Optimal programme characteristics not 

identified yet
Recommended frequency 3 times weekly 

with a duration of at least 12 supervised 
sessions

Bone Regulation of metabolic demands
Structural maintenance to withstand load-

ing

Increase in bone mineral density, bone 
mineral content, and bone area

To target large muscles
Safe transition towards high loads (≥ 80% 

1RM)
Familiarisation with movement patterns
Combination with impact loading exer-

cises

Osteopenia and osteoporosis
5 sets of 5 repetitions, maintaining an inten-

sity of 80-85% 1 RM performed at least 
twice per week

Tendon Force transmission
Storage, recoil and release of energy

Increase in tendon stiffness, Young’s 
modulus and tendon cross-sectional area

To adopt muscle contraction
intensities higher than 70% of MVC or 

RM
Type of contraction (isometric, concentric, 

eccentric) not relevant
Longer durations (≥ 12 weeks) more 

effective

Reduction of tendon stiffness and Young’s 
modulus

5 sets of 4 repetitions with high-intensity 
loading (85–90% MVIC) with a contrac-
tion and relaxation duration of 3 s each, 
and an interset rest of 2 min. To be per-
formed 3 times per week

Muscle Contraction to produce force and motion Increase in myofibrillar cross sectional area 
(CSA) of type I/II fibres, lean muscle 
mass, fascicle length and pennation angle

Individualised and periodised approach
Multi-joint exercise per major muscle 

group in elderly
Type of contraction relevant for muscle 

fibres architectural adaptations

Sarcopenia
2–3 sets of 1–2 multi-joint exercises per 

major muscle group, with intensities of 
70–85% of 1RM, 2–3 times per week
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metabolic stress can trigger muscle adaptation and growth 
[143]. A protein kinase called the mechanistic/mammalian 
target of rapamycin (mTOR) appears crucial in the pathway 
through which mechanical stimuli regulate protein synthesis 
and muscle mass [41]. Morphological factors such as CSA, 
muscle fibre composition, pennation angle, and fascicle length, 
are important in force production. Loss of skeletal muscle 
mass, reduced motor unit (MU) discharge rate, and impaired 
function are primarily associated with aging. This is defined as 
either sarcopenia (age-related loss of skeletal muscle mass and 
function) or dynapenia (age-associated loss of muscle strength 
that is not caused by neurologic or muscular diseases) [179, 
180]. The reduction of MU discharge rate and type 2 muscle 
fibres lead consequently to reduced RFD, which is associated 
with impaired functional capacity during daily tasks (e.g. bal-
ance recovery during tripping) [3, 181, 182]. Pijnappels et al. 
[183] showed that the identification of individuals most at risk 
of falling could be predicted by their maximal leg press push-
off force level. In older adults, lower muscle strength is also 
associated with an increased risk of dementia [184], loss of 
independence, and mortality [185–188]. However, the rate of 
strength decline is dependent on age and physical activity lev-
els. Indeed, individuals participating in strength training can 

significantly attenuate the loss of muscle mass and strength, 
and their undesirable consequences [189]. Strong evidence 
suggests that an appropriately designed resistance training 
program for older adults should include an individualised and 
periodized approach working toward 2–3 sets of 1–2 multi-
joint exercises per major muscle group, achieving intensities 
of 70–85% of 1RM, 2–3 times per week [126]. Strength train-
ing is a feasible and effective strategy to counteract muscle 
weakness [190], physical frailty, age-related intramuscular 
adipose infiltration, decline in physical function, risk for falls, 
and reduction in CSA [189, 191]. These benefits are under-
pinned by the ability of strength training to countermeasure 
age-related changes in muscle and central nervous system 
function. Specifically, strength training is highly effective in 
improving MU discharge rate, reducing loss of type 2 fibres, 
and enhancing RFD and muscle strength, thus explaining the 
functional benefits in the older population, especially in frail 
elderly [3, 181].

Overall, strength training increases neural drive, inter-
muscular coordination, myofibrillar CSA of type I and II 
fibres, lean muscle mass, and pennation angle [2, 10, 11]. 
Not surprisingly, primary prevention strategies recommend 
the employment of strength training for the reduction of 

Fig. 2  Profile of a middle-aged man with mid-portion Achilles tendinopathy



 L. Maestroni et al.

acute sports injuries [15, 34]. Among these, muscle injuries 
are very common in sports [34, 192], constituting 31% of 
all injuries in elite football [193]. For example, the Nordic 
hamstring exercise (NHE) (i.e., a form of supramaximal 
eccentric loading) has been shown to significantly reduce 
the risk of hamstring injuries [192, 194–196], with long-
term benefits associated with increases in fascicle length 
and improvements in eccentric knee flexor strength [197]. 
The systematic review and meta-analysis conducted by van 
Dyk et al. [198] showed that programmes including the NHE 
reduced hamstring injuries by 51% in athletes across mul-
tiple sports. Zouita et al. [199] showed that strength train-
ing reduced the risk of injury in elite young soccer players 
during one season (estimated total injury rate per 1,000 h 
of exposure were: 0.70 for the experimental group and 2.32 
for the control group). Of note, approximately 50% of the 
total injuries sustained were classified as “muscle strains”, 
thus demonstrating the protective role of strength training 
on muscle tissues. Although not thoroughly consistent with 
strength training prescription over the study period, Haroy 
et al. [200] showed that a single exercise with different levels 
of targeting the adductors reduced the prevalence and risk 
of groin injuries in semi-professional Norwegian football 

players by 41%. Considering the economic burden of mus-
cle injuries in elite settings (e.g., a single hamstring injury 
resulting in ~ 17 days lost from training and competition 
is estimated to cost about €280,000 in elite soccer clubs) 
[197] and the importance of muscle tissue health for players’ 
availability and performance, implementation of an accurate 
strength training schedule during the season appears vital. A 
summary of the benefits for various musculoskeletal tissues 
and disorders are depicted in Table 1.

4  Strength Training: Practical Applications

Researchers have challenged the existence of “non-respond-
ers” to exercise. Positive adaptations are influenced by mul-
tidimensional aspects such as genetic factors, fitness level, 
training history, nutritional intake, psychological and social 
states, sleep and recovery, age, weight, and prescribed train-
ing workload [27], and therefore, the magnitude of adapta-
tions between individuals may differ. Thus, strength training 
prescription should begin with an accurate subjective and 
objective examination. This investigates training and injury 
history, general health status, coexistent comorbidities, 

Fig. 3  Profile of an older man (73 years old) presenting with sarcopenia and a recent history of prostate cancer
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single-joint and multi-joint strength evaluation and move-
ment pattern analysis relevant to the potential proposed 
exercise programme. Clinical tools such as questionnaires 
and outcome measures may be implemented in the sub-
jective examination to more accurately detect and discuss 
the significant aspects that may negatively counteract the 
expected positive adaptations and can be administered at 
specific timeframes at the judicious discretion of healthcare 
professionals. For example, specific questionnaires and out-
comes measures can be adopted to monitor sleep [201] and 
stress levels [202, 203] over the course of an intervention. 
This transdiagnostic approach attempts to understand com-
monalities and shared mechanisms among different multidi-
mensional aspects and to identify any adverse responses to 

the planned intervention that may be driven by such factors 
[204]. This enables a stratified model of care (i.e., person-
alised medicine) to maximise treatment-related benefits, 
reduce risk of adverse events and increase healthcare effi-
ciency [205] (see examples in Figs. 2, 3, 4).  

This process allows a more complete understanding 
of the person, his/her past and current exposure to load-
ing activities, quality of life, beliefs and attitude towards 
exercise, relevant impairment in mobility, potential site of 
loading, adequate skeletal muscle trophism and/or isolated 
strength deficits that may impair rapid exposure to high-
load exercises; thus, requiring a period of familiarisation 
and anatomical adaptation via adoption of different loading 
schemes. For example, in untrained individuals sensitive 

Fig. 4  Profile of a young runner (19 years old) with proximal hamstring tendinopathy preparing for the Marathon

Table 2  Suggested strength training variables when employing the traditional percentage fixed loading program (TL) or auto-regulated training 
(AR)

TL traditional loading, AR auto-regulated training, RM repetition maximum, RPE rate of perceived exertion, RIR repetitions in reserve

PROGRAM REPETITIONS SETS LOAD REST FREQUENCY

TL 1–6 3–5 @80–100% 1RM 3–5 min 2–3/week

PROGRAM RM ZONE SETS RPE 0-10 RIR REST FREQUENCY

AR 1–6 3–5 8–10 0–2 3–5 min 2–3/week
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to spinal axial loading, who cannot tolerate large external 
loads, bilateral exercises, such as the back squat can be con-
fidently substituted with unilateral exercises due to similar 
effectiveness in lower body strength development, despite 
relative lower external loading [206]. When the goal is to 
elicit alterations in skeletal muscle hypertrophy in untrained 
individuals, current literature [24, 207–209] suggests train-
ing with a high level of effort, irrespective of load. Whereas 
momentary failure is important during low load training to 
capitalise on muscular adaptations, this does not provide any 
additional benefits when training at high resistance training 
loads. Hence, lighter loads can be initially lifted until fail-
ure to maximise MU recruitment, increase muscle size and 
increase strength (to a certain extent). With gradual training 
exposure and increasing resistance training experience, these 
can be progressed to higher load-lower repetition schemes 
without momentary failure, thus providing heightened neu-
ral impulses to maximise strength gains [208, 210–212].

Global recommendations suggest strength training should 
be performed two or more days per week [230–233]. Maxi-
mal strength can be defined as the upper limit of the neuro-
muscular system to produce force. Force production against 
an external resistance is an essential trainable ability [213]. 
It must be noted that in untrained individuals almost any 
resistance training exercise programme, load and method 
may increase strength, which is more likely attributable to 
neural adaptations in response to the new training stimu-
lus [2, 24, 212, 214, 215]. However, progressive overload 
stimuli appear essential to promote further strength adapta-
tions in more experienced individuals [24, 214, 234]. For 
these, current evidence indicates that prescription of maxi-
mal strength training should involve a load (or intensity) 
of 80–100% of the participant’s 1RM, utilizing approxi-
mately 1–6 repetitions, across 3–5 sets, with rest periods 
of 3–5 min, and a frequency of 2–3 times per week [234]. 
This implies that loads are determined by percentages of 
1RM, with testing potentially challenging when working 

Fig. 5  Graphical representation of common subjective and objective variables that contribute to programming and progression decision making 
in strength training
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Table 3  Example of a potential strength training session for postmenopausal women with low bone mass (performed at least twice per week for an ideal duration of at least one year). The length 
of each phase, exercise selection and the progressions are chosen in accordance with the participant’s weekly evaluation

RM repetition maximum, RPE rate of perceived exertion, RIR repetitions in reserve, RFESS rear foot elevated split squat, ≫ progress to these exercises during next cycle or perform these 
instead/if preferred and patient/client is competent

Phase 1-Familiarisation Exercise Fixed loading prescription Auto-regulated training prescription Impact loading
Training aim

To ensure safe transition to high-
intensity load

To familiarise with exercises and 
movement patterns

Goblet Squat ≫ Split Squat
Romanian Deadlift
Box Squat
Overhead press ≫ Press-up
Bench Press
Seated Row ≫ Bent Over Rows

1 sets of 12 repetitions of ~ 50–60% 
1RM

2 min inter set rest

1 sets of 12 RM with RPE 4–6 and 
RIR 4–5

1 min inter set rest

3 repetitions × 4 sets
Snap-downs ≫ jump to box ≫ stand-

ing broad jump ≫ depth land ≫ drop 
jump

Phase 2—Strength endurance 
emphasis

Exercise Fixed loading prescription Auto-regulated training prescription Impact loading

Training aim

To increase muscle mass, strength 
and musculotendinous stiffness

To facilitate safe transition to 
strength training emphasis

Split Squat ≫ RFESS ≫ Box 
Squat ≫ Trap-bar Deadlift

Romanian Deadlift
Overhead Press ≫ Press-up or Bench 

Press
Seated Row ≫ Bent Over Rows

3 sets of 8–12 repetitions of 
~ 60–75% 1RM

1–2 min inter set rest

3 sets of 10RM with RPE 6–7 and 
RIR 2–3

2 min inter set rest

3 × 20 cm depth land during the first 6 
interset rest periods

2 broad jump during the last 6 interset 
rest periods

Phase 3—Strength emphasis Exercise Fixed loading prescription Auto-regulated training prescription Impact loading
Training aim

To increase muscle mass, strength, 
rate of force development and 
musculotendinous stiffness

To improve motor unit discharge rate
To reduce loss of type II fibres
To increase bone mass, bone mineral 

content and bone mineral density

Trap-bar Deadlift
Romanian Deadlift
Overhead Press or Bench Press
Bent Over Rows

4 sets of 5 repetitions of > 85% 1RM
3–5 min inter set rest

4 sets of 5RM with RPE 8–9 and 
RIR 1–2

3–5 min inter set rest

4 countermovement jumps during the 
first 4 interset rest periods

3 × 3 hurdles jump during the last 4 
inter-set rest periods
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with load compromised patients and/or pain interference. 
Therefore, the adoption of an auto-regulated approach (AR), 
which is based on RM training zones, rate of perceived exer-
tion (RPE) and repetitions in reserve (RIR) [216, 217], may 
appear more feasible and clinically advantageous through-
out the training cycle. This also accounts for fluctuations 
in strength capabilities across a training mesocycle [216, 
218], which can be influenced by the aforementioned multi-
dimensional aspects. In experienced individuals, RPE/RIR 
scale can be used as a method to assign daily training load, 
aid in session to session load progression, and monitor indi-
vidual rates of adaptation [216, 219]. Assessment of move-
ment velocity may also be another valid alternative used to 
estimate the percentage of loading [220, 221]. This exploits 
the inverse linear relationship between load and mean con-
centric velocity (MCV). Indeed, providing that maximal 
concentric effort is applied during movement, MCV will 
decrease as magnitude of load increases, thus allowing esti-
mation of relative training loads (%1RM) monitoring move-
ment velocity [222]. In addition, different velocity loss (VL) 
thresholds across repetitions performed within a set may be 
also adopted to dictate mechanical and metabolic stress, 
hormonal responses and neuromuscular fatigue, thus induc-
ing different adaptations. Small to moderate VL threshold 
(i.e., < 20%) are recommended to maximise strength gains 
in resistance-trained individuals [223, 224]. For clarity of 
information, examples of loading schemes for strength train-
ing are depicted in Table 2. Common subjective and objec-
tive variables that contribute to programming and progres-
sion decision making are illustrated in Fig. 5. 

The frequency and duration of a strength training program 
might be variable, although position statements and clinical 
guidelines for specific disorders and targeted populations 
are clearly outlined in the available literature [77, 122, 126, 
127, 176, 189, 217, 225, 226]. However, significant changes 
in musculoskeletal tissues are generally evident after 8 to 
12 weeks, although some studies observed increases in mus-
cle mass after only 2 to 4 weeks [37]. This early increase 
in strength is likely caused by neuromuscular and connec-
tive tissue adaptations [227], whereas the early increases in 
muscle CSA may be the result of oedema [228]. For ten-
don adaptations, longer durations (≥ 12 weeks) appear to 
be more effective [141]. An example of a potential strength 
training session is outlined in Table 3 and further examples 
can be found in our recent published work [229].

5  Conclusion

This article has briefly examined the mechanisms under-
pinning positive adaptations to strength training as well 
as potential benefits for the musculoskeletal system. An 
overview of training strategies to target these adaptations 

has also been discussed in both common musculoskeletal 
disorders and primary prevention strategies. The concepts 
expressed in this review may help healthcare professionals 
in understanding and promoting clear and evidence-based 
recommendations for strength training in musculoskeletal 
practice, sports medicine and a wide array of medical spe-
cialties. Therefore, shared interdisciplinary recommenda-
tions appear vital.
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